Osmosensitivity of Sucrose Uptake by Immature Pea Cotyledons Disappears during Development.

نویسندگان

  • F C Lanfermeijer
  • J W Koerselman-Kooij
  • A C Borstlap
چکیده

Sucrose uptake was studied in isolated, immature pea cotyledons (Pisum sativum L. cv Marzia) in relation to their developmental stage. During the developmental period examined the water content of the cotyledons decreased from approximately 80% "stage 1" to approximately 55% "stage 2". When assayed in an isotonic medium (400 osmoles per cubic meter) the influx capacity per gram fresh weight for sucrose was almost constant during this developmental period. The influx could be analyzed into a saturable component (K(m) approximately 9 moles per cubic meter; V(max) approximately 150 nanomoles per minute per gram fresh weight) and an unsaturable component (k(i) approximately 0.5 nanomoles per minute per gram fresh weight [per mole per cubic meter]). Incubation in a hypotonic medium reduced the sucrose influx in stage 1 cotyledons, up to 80% reduction at 0 milliosmole (medium without mannitol), but had no effect on sucrose uptake by stage 2 cotyledons. Reduced uptake in a hypotonic medium (100 osmoles per cubic meter) could be attributed to a lowering of the V(max) from 150 to 36 nanomoles per minute per gram fresh weight. During incubation of stage 1 cotyledons and stage 2-cotyledons in a hypotonic medium (200 osmoles per cubic meter) their volume increased by 16% and 5.6%, respectively, while the calculated turgor pressure increased from 0.2 to 0.6 megapascal for cotyledons of both developmental stages. Reduced sucrose influx in hypotonic medium, therefore, seems to be related to cell swelling (membrane stretching) rather than to increased turgor pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition by fusicoccin of germination of pea seeds.

Fusicoccin inhibits the germination of pea (Pisum sativum L. cv Progress 9) seeds by decreasing the growth of the embryonal axis and by stimulating the fresh weight increase of the cotyledons. The growth of isolated embryonal axes in the presence of sucrose and KCl is stimulated by fusicoccin. The effect of fusicoccin on the seeds is not counteracted by sucrose and KCl. Fusicoccin promotes pref...

متن کامل

Biochemical Studies on Development of Mitochondria in Pea Cotyledons during the Early Stage of Germination: Effects of Antibiotics on the Development.

l-Leucine-U-(14)C was incorporated into mitochondrial protein in pea (Pisum sativum var. Alaska) cotyledons during the imbibing stages. Incorporation was almost completely inhibited by cycloheximide but not by chloramphenicol. Both antibiotics did not affect increases in mitochondrial activities and components of the cotyledons during imbibition. Therefore, mitochondrial development seems to be...

متن کامل

A pea seed mutant affected in the differentiation of the embryonic epidermis is impaired in embryo growth and seed maturation.

During legume seed development the epidermis of the embryos differentiates into a transfer cell layer which mediates nutrient uptake during the storage phase. This specific function of the epidermal cells is acquired at the onset of embryo maturation. We investigated this process in the pea seed mutant E2748. The epidermal cells of the mutant embryo, instead of turning into transfer cells, enla...

متن کامل

Sugar Uptake and Translocation in the Castor Bean Seedling II. Sugar Transformations During Uptake.

During sucrose uptake by the cotyledons of castor bean seedlings excised from their endosperms, small amounts of glucose and fructose accumulate in the medium. When these hexoses were supplied separately, it was found that the rate of fructose uptake exceeded that of glucose at concentrations up to 0.5 m. Sucrose uptake exceeded that of both hexoses combined, particularly at concentrations grea...

متن کامل

Intracellular sucrose communicates metabolic demand to sucrose transporters in developing pea cotyledons

Mechanistic inter-relationships in sinks between sucrose compartmentation/metabolism and phloem unloading/translocation are poorly understood. Developing grain legume seeds provide tractable experimental systems to explore this question. Metabolic demand by cotyledons is communicated to phloem unloading and ultimately import by sucrose withdrawal from the seed apoplasmic space via a turgor-home...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 1991